You've successfully subscribed to ZKF
Great! Next, complete checkout for full access to ZKF
Welcome back! You've successfully signed in.
Success! Your account is fully activated, you now have access to all content.
Success! Your billing info is updated.
Billing info update failed.

Using Pipenv with Django

Managing dependencies in Python projects used to be a huge pain, but it's a lot easier now with Pipenv

Zachary Fleischmann
Zachary Fleischmann
. 3 min read

Managing dependencies in Python projects can be a a really painful experience.

Getting your virtual environments set up and installing dependencies under the correct version of Python are just two of the challenges that a newcomer to the ecosystem might face. As I've been working with Python more, I've definitely forgotten to activate my virtual environment or run into versioning issues, like trying to run Django 2.x but only having Django 1.x available in my environment.

Additionally, different development communities within the Python ecosystem tend to have their own way of managing environments and dependencies. So when I was learning data science, I used Anaconda for my environments and it would often conflict with virtualenv. I once updated the requirements.txt file for a Django project and included everything that comes with a fresh Anaconda environment (pandas, numpy, etc) and didn't realize for a couple of commits.

For someone coming from Ruby (bundler), PHP (composer), or JavaScript (npm), the process seems messy and unnecessarily complex. It also feels frustratingly error-prone.


Pipenv is the solution - it works like other bundlers and dependency managers (so like you'd expect it to work) and it works really well. Pipenv uses a Pipfile and Pipfile.lock so you can manage your dependencies (including development dependencies) and have deterministic builds. It still manages your dependencies in a virtual environment, but it makes creating and activating virtual environments easy and straightforward.

Getting Started

The first step is to install Pipenv, which you can do with homebrew:

brew install pipenv

Now that it's installed, you can use it to install modules and setup a virtual environment for a project. Let's create a Django project and manage our dependencies for it with pipenv.

Make a directory called hello_django/ somewhere on your computer:

mkdir hello_django
cd hello_django

Now install Django, like so:

pipenv install django

Notice that we started by installing a dependency and not by creating a new environment?

What's really great about pipenv is that it will automatically set up a new environment for you! When we run the above command, pipenv will create a virtual environment called hello_django-twf5jxgT where hello_django is the name of our directory and twf5jxgT is a hash.

This virtual environment will be created inside a .virtualenvs/ directory at the root of your user directory.

Working with Pipenv

Now that we have Django installed and our virtual environment setup, we can create our Django project:

pipenv run django-admin startproject hello_django .

This is the command for creating a new Django project. We add . at the end of the command so that the project is created in our current directory (instead of a subdirectory).

Now if we want to start up our new app, we can do so with the following command:

pipenv run python runserver

The pipenv run part of the above two commands is required, unless we run pipenv shell to activate our virtual environment:

pipenv shell # activate virtual environment
python runserver

Working with Dependencies

We can install another package by using pipenv install:

pipenv install psycopg2-binary

When we run pipenv install, the Pipfile gets updated automatically, just like with npm, composer, et al:

name = "pypi"
url = ""
verify_ssl = true


django = "*"
+psycopg2-binary = "*"

python_version = "3.6"

Pipenv Scripts

One of the things that's great about npm and the package.json file it uses is the ability to create custom scripts for commonly performed tasks. This automation is a great way of speeding up your development workflow.

You can also do this with pipenv! All scripts go under a [scripts] heading. Each script needs a name and a string for a command to run:

start = "python runserver"

In this example, our script is start and our command is "python runserver", which is the command for starting our Django server.

To run the above pipenv script, we do the following:

pipenv run start

Where start is the name of the command we want to run.


This feels easier than using virtualenvs on a few fronts. I've just covered setting up an environment and installing dependencies. But the Pipfile that pipenv creates makes managing dependences (and other things, like Python versions) a lot easier than requirements.txt. For instance, to install a dependency just for your development environment, you run pipenv install --dev. Notice the same simplicity of working with Node dependencies?

For a next step, I highly recommend checking out the documentation. There are pages on a basic pipenv workflow to follow and how to migrate from a requirements.txt file. There are also some cool, advanced features like automatically loading a .env file and setting up shell completion for pipenv.


Zachary Fleischmann

Zakk Fleischmann is a software engineer and writer. In 2019, he founded Hawthorne Interactive, an agency specialized in building enterprise software for companies, startups, and government agencies